AI no shinrigaku : arugorizumikku baiasu to no tatakaikata o t�oshite manabu, bijinesu p�ason to enjinia no tame no kikai gakush�u ny�umon

Book Cover
Average Rating
Published
T�oky�o-to Shinjuku-ku : Orair�i Japan, 2021.
Status
Available Online

Description

Loading Description...

More Details

Format
Edition
Shohan.
Language
Japanese
ISBN
9784873119625, 4873119626

Notes

Description
The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias. In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses some of the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors--and originates in--these human tendencies. While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. Youll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the larger sociological impact of bias in the digital era.
Language
In Japanese.
Local note
O'Reilly,O'Reilly Online Learning: Academic/Public Library Edition

Discover More

Also in this Series

Checking series information...

More Like This

Loading more titles like this title...

Reviews from GoodReads

Loading GoodReads Reviews.

Citations

APA Citation, 7th Edition (style guide)

Baer, T., Musha, H., & Musha, R. (2021). AI no shinrigaku: arugorizumikku baiasu to no tatakaikata o t�oshite manabu, bijinesu p�ason to enjinia no tame no kikai gakush�u ny�umon (Shohan.). Orair�i Japan.

Chicago / Turabian - Author Date Citation, 17th Edition (style guide)

Baer, Tobias, Hiroyuki, Musha and Rumi, Musha. 2021. AI No Shinrigaku: Arugorizumikku Baiasu to No Tatakaikata O T�oshite Manabu, Bijinesu P�ason to Enjinia No Tame No Kikai Gakush�u Ny�umon. T�oky�o-to Shinjuku-ku: Orair�i Japan.

Chicago / Turabian - Humanities (Notes and Bibliography) Citation, 17th Edition (style guide)

Baer, Tobias, Hiroyuki, Musha and Rumi, Musha. AI No Shinrigaku: Arugorizumikku Baiasu to No Tatakaikata O T�oshite Manabu, Bijinesu P�ason to Enjinia No Tame No Kikai Gakush�u Ny�umon T�oky�o-to Shinjuku-ku: Orair�i Japan, 2021.

Harvard Citation (style guide)

Baer, T., Musha, H. and Musha, R. (2021). AI no shinrigaku: arugorizumikku baiasu to no tatakaikata o t�oshite manabu, bijinesu p�ason to enjinia no tame no kikai gakush�u ny�umon. Shohan. T�oky�o-to Shinjuku-ku: Orair�i Japan.

MLA Citation, 9th Edition (style guide)

Baer, Tobias,, Hiroyuki Musha, and Rumi Musha. AI No Shinrigaku: Arugorizumikku Baiasu to No Tatakaikata O T�oshite Manabu, Bijinesu P�ason to Enjinia No Tame No Kikai Gakush�u Ny�umon Shohan., Orair�i Japan, 2021.

Note! Citations contain only title, author, edition, publisher, and year published. Citations should be used as a guideline and should be double checked for accuracy. Citation formats are based on standards as of August 2021.

Staff View

Grouped Work ID
4c32da71-a33c-e2cf-000f-af6e2def59d7-jpn
Go To Grouped Work View in Staff Client

Grouping Information

Grouped Work ID4c32da71-a33c-e2cf-000f-af6e2def59d7-jpn
Full titleai no shinrigaku arugorizumikku baiasu to no tatakaikata o t oshite manabu bijinesu p ason to enjinia no tame no kikai gakush u ny umon
Authorbaer tobias
Grouping Categorybook
Last Update2025-01-24 12:33:29PM
Last Indexed2025-01-30 03:10:58AM

Book Cover Information

Image Sourcedefault
First LoadedAug 15, 2023
Last UsedJan 20, 2025

Marc Record

First DetectedMar 07, 2023 02:24:36 PM
Last File Modification TimeOct 04, 2023 03:50:54 PM
SuppressedRecord had no items

MARC Record

LEADER05462nam a22005417i 4500
001on1356973594
003OCoLC
00520231004155004.0
006m     o  d        
007cr cnu|||unuuu
008230106s2021    ja      o     000 0 jpn d
020 |a 9784873119625|q (electronic bk.)
020 |a 4873119626|q (electronic bk.)
035 |a (OCoLC)1356973594
037 |a 9784873119625|b O'Reilly Media
040 |a ORMDA|b eng|e rda|e pn|c ORMDA|d UPM|d STF|d UAB
0411 |a jpn|h eng
049 |a MAIN
050 4|a QA76.9.A43
066 |c Hani|c $1
08204|a 006.31|2 23/eng/20230106
1001 |a Baer, Tobias,|e author.
24010|a Understand, manage, and prevent algorithmic bias.|l Japanese
24510|6 880-01|a AI no shinrigaku :|b arugorizumikku baiasu to no tatakaikata o t�oshite manabu, bijinesu p�ason to enjinia no tame no kikai gakush�u ny�umon /|c Tobias Baer cho ; Musha Hiroyuki, Musha Rumi yaku = Understand, manage, and prevent algorithmic bias : a guide for business users and data scientists / Tobias Baer.
24631|a Understand, manage, and prevent algorithmic bias :|b a guide for business users and data scientists
250 |6 880-02|a Shohan.
264 1|6 880-03|a T�oky�o-to Shinjuku-ku :|b Orair�i Japan,|c 2021.
300 |a 1 online resource (344 pages)
336 |a text|b txt|2 rdacontent
337 |a computer|b c|2 rdamedia
338 |a online resource|b cr|2 rdacarrier
520 |a The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias. In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses some of the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors--and originates in--these human tendencies. While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. Youll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the larger sociological impact of bias in the digital era.
546 |a In Japanese.
590 |a O'Reilly|b O'Reilly Online Learning: Academic/Public Library Edition
650 0|a Computer algorithms|x Psychological aspects.
650 0|a Machine learning.|9 46043
7001 |6 880-04|a Musha, Hiroyuki,|e translator.
7001 |6 880-05|a Musha, Rumi,|e translator.
76508|i Translation of:|a Baer, Tobias.|t Understand, manage, and prevent algorithmic bias.|d [New York, NY] : Apress, [2019]|z 1484248848|w (OCoLC)1091846682
85640|u https://library.access.arlingtonva.us/login?url=https://learning.oreilly.com/library/view/~/9784873119625/?ar|x O'Reilly|z eBook
88010|6 245-01/$1|a AI$1i$N!=x!KH':`(B :|b $1i%"i%ki%4i%ji%:i%_i%Ci%/i%Pi%$i%"i%9i$Hi$NKagi$$!Bgi$r!\(i$7i$F':`i$V(B, $1i%Si%8i%Mi%9i%Qi!<i%=i%si$Hi%(i%si%8i%Ki%"i$Ni$?i$ai$N!E]!D[':`!RM!2~!^M(B /|c Tobias Baer$1!UN(B ; $1!F'KT73=*-1w(B, $1!F'KT7i$ki$_KYF(B = Understand, manage, and prevent algorithmic bias : a guide for business users and data scientists / Tobias Baer.
880 |6 250-02/$1|a $1!WN!JH(B.
880 1|6 264-03/$1|a $1!D&!0a!\n!Be!;&'4U(B :|b $1i%*i%ii%$i%ji!<i!&i%8i%ci%Qi%s(B,|c 2021.
880 |6 520-00/$1|a "$1i%Gi%#i!<i%Wi%ii!<i%Ki%si%0!0dKFUi$N!>3!0&-4[i$Hi$Hi$bi$K'XL!MBi$5i$li$ki$hi$&i$Ki$Ji$Ci$?!+%i%"i%ki%4i%ji%:i%_i%Ci%/i%Pi%$i%"i%9!+&i$N!X4(B&#x8AAC;$1!CU!+3i%"i%ki%4i%ji%:i%_i%Ci%/i%Pi%$i%"i%9i$Hi$O!+5i%3i%si%Ti%ei!<i%?i$Ki$hi$k!2/i$Ci$?!Fm!:mi$Ni$3i$Hi$Gi$9!+3i%Mi%Ci%Hi%7i%gi%Ci%Wi$Gi$^i$ki$G!M"i$Oi$:i$li$Ji$*-4=i$ai$ri$5i$li$ki$Hi$+!+5i$3i$Ai$ii$Ki$O!_ti$,i$Ji$$i$Ki$bi$+i$+i$oi$ii$:i%"i%+i%&i%si%Hi$r!3@!Q4i$5i$li$ki$Ji$Ii$O!+5i%Pi%$i%"i%9i$N9>a!=YE`6i$N!3,!81!1Ni$H!X7i$(i$ki$Gi$7i$gi$&!+3i%3i%si%Ti%ei!<i%?!#((BAI$1!#)i$,!0%i$9!Fm!:mi$Ki$OKEa!3Ki$7i$Ei$ii$$i$5i$^i$6i$^i$J!+%i%Pi%$i%"i%9!#(!2/i$j!#)!+&i$,!:S!7zi$7i$^i$9!+3!Ci!CUi$Gi$O!+5i%Pi%$i%"i%9i$,i$Ii$Ni$hi$&i$K3L{!Kyi$9i$ki$+i$r!N#i$j!+5i%Pi%$i%"i%9i$Hi$NKagi$$!Bgi$r!\(i$7i$F!E]!D[':`!RM!3"!TBi$Ki$Di$$i$F':`i$S!+5i%7i%9i%Fi%`i$Ki%Pi%$i%"i%9i$,!Gk!2~i$7i$Ji$$i$hi$&i$K'Y^!^n!+5!P'!KHi$9i$k!Bg!G*i$r!C!i$ii$+i$Ki$7i$^i$9!+3(B" --|c Provided by publisher.
8801 |6 700-04/$1|a $1!F'KT73=*-1w(B,|e translator.
8801 |6 700-05/$1|a $1!F'KT7i$ki$_(B,|e translator.
994 |a 92|b VIA
999 |c 280239|d 280239