Beginning data science in R 4 : data analysis, visualization, and modelling for the data scientist

Book Cover
Average Rating
Published
New York, New York : Apress, [2022].
Status
Available Online

Description

Loading Description...

More Details

Format
Edition
2nd ed..
Language
English
ISBN
9781484281550, 1484281551
UPC
10.1007/978-1-4842-8155-0

Notes

General Note
Includes index.
Description
Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. Updated for the R 4.0 release, this book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Beginning Data Science in R 4, Second Edition details how data science is a combination of statistics, computational science, and machine learning. You'll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. Modern data analysis requires computational skills and usually a minimum of programming. After reading and using this book, you'll have what you need to get started with R programming with data science applications. Source code will be available to support your next projects as well.
Local note
O'Reilly,O'Reilly Online Learning: Academic/Public Library Edition

Discover More

Also in this Series

Checking series information...

More Like This

Loading more titles like this title...

Reviews from GoodReads

Loading GoodReads Reviews.

Citations

APA Citation, 7th Edition (style guide)

Mailund, T. (2022). Beginning data science in R 4: data analysis, visualization, and modelling for the data scientist (2nd ed..). Apress.

Chicago / Turabian - Author Date Citation, 17th Edition (style guide)

Mailund, Thomas. 2022. Beginning Data Science in R 4: Data Analysis, Visualization, and Modelling for the Data Scientist. New York, New York: Apress.

Chicago / Turabian - Humanities (Notes and Bibliography) Citation, 17th Edition (style guide)

Mailund, Thomas. Beginning Data Science in R 4: Data Analysis, Visualization, and Modelling for the Data Scientist New York, New York: Apress, 2022.

Harvard Citation (style guide)

Mailund, T. (2022). Beginning data science in R 4: data analysis, visualization, and modelling for the data scientist. 2nd ed.. New York, New York: Apress.

MLA Citation, 9th Edition (style guide)

Mailund, Thomas. Beginning Data Science in R 4: Data Analysis, Visualization, and Modelling for the Data Scientist 2nd ed.., Apress, 2022.

Note! Citations contain only title, author, edition, publisher, and year published. Citations should be used as a guideline and should be double checked for accuracy. Citation formats are based on standards as of August 2021.

Staff View

Grouped Work ID
de23c9ac-1e4f-f3d0-eb80-93888bf7aa43-eng
Go To Grouped Work View in Staff Client

Grouping Information

Grouped Work IDde23c9ac-1e4f-f3d0-eb80-93888bf7aa43-eng
Full titlebeginning data science in r 4 data analysis visualization and modelling for the data scientist
Authormailund thomas
Grouping Categorybook
Last Update2025-01-24 12:33:29PM
Last Indexed2025-02-07 03:32:01AM

Book Cover Information

Image SourcecontentCafe
First LoadedAug 5, 2023
Last UsedNov 2, 2024

Marc Record

First DetectedMar 20, 2023 10:19:20 AM
Last File Modification TimeDec 17, 2024 08:21:31 AM
SuppressedRecord had no items

MARC Record

LEADER03755cam a2200517 i 4500
001on1333434850
003OCoLC
00520241217081912.0
006m     o  d        
007cr cnu|||unuuu
008220628s2022    nyua    o     001 0 eng d
019 |a 1333080227|a 1346260299
020 |a 9781484281550|q (electronic bk.)
020 |a 1484281551|q (electronic bk.)
0247 |a 10.1007/978-1-4842-8155-0|2 doi
035 |a (OCoLC)1333434850|z (OCoLC)1333080227|z (OCoLC)1346260299
037 |a 9781484281550|b O'Reilly Media
040 |a ORMDA|b eng|e rda|e pn|c ORMDA|d GW5XE|d YDX|d EBLCP|d YDX|d OCLCF|d NWQ|d N$T|d OCLCQ|d OCLCO|d OCLCQ|d NZHMA|d OCLCQ|d OCLCO
049 |a MAIN
050 4|a QA276.45.R3
072 7|a UMC|2 bicssc
072 7|a COM051010|2 bisacsh
072 7|a UMC|2 thema
08204|a 519.50285/536|2 23/eng/20220628
1001 |a Mailund, Thomas,|e author.|1 https://id.oclc.org/worldcat/entity/E39PCjFY7JwPWh9YYWXHXpmq73|9 378096
24510|a Beginning data science in R 4 :|b data analysis, visualization, and modelling for the data scientist /|c Thomas Mailund.
250 |a 2nd ed..
264 1|a New York, New York :|b Apress,|c [2022]
300 |a 1 online resource (528 pages) :|b illustrations
336 |a text|b txt|2 rdacontent
337 |a computer|b c|2 rdamedia
338 |a online resource|b cr|2 rdacarrier
500 |a Includes index.
5050 |a 1: Introduction -- 2: Introduction to R Programming -- 3: Reproducible Analysis -- 4: Data Manipulation -- 5: Visualizing Data -- 6: Working with Large Data Sets -- 7: Supervised Learning -- 8: Unsupervised Learning -- 9: Project 1: Hitting the Bottle -- 10: Deeper into R Programming -- 11: Working with Vectors and Lists -- 12: Functional Programming -- 13: Object-Oriented Programming -- 14: Building an R Package -- 15: Testing and Package Checking -- 16: Version Control -- 17: Profiling and Optimizing -- 18: Project 2: Bayesian Linear Progression -- 19: Conclusions.
520 |a Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. Updated for the R 4.0 release, this book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Beginning Data Science in R 4, Second Edition details how data science is a combination of statistics, computational science, and machine learning. You'll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. Modern data analysis requires computational skills and usually a minimum of programming. After reading and using this book, you'll have what you need to get started with R programming with data science applications. Source code will be available to support your next projects as well.
590 |a O'Reilly|b O'Reilly Online Learning: Academic/Public Library Edition
650 0|a R (Computer program language)|9 74517
650 0|a Statistics|x Data processing.|9 56712
77608|c Original|z 1484281543|z 9781484281543|w (OCoLC)1302576988
77608|i Print Version:|a Mailund, Thomas.|t Beginning data science in R 4: data analysis, visualization, and modelling for the data scientist.|d New York : Apress, 2022|z 9781484281543|w (OCoLC)1302576988
85640|u https://library.access.arlingtonva.us/login?url=https://learning.oreilly.com/library/view/~/9781484281550/?ar|x O'Reilly|z eBook
938 |a ProQuest Ebook Central|b EBLB|n EBL7021726
938 |a YBP Library Services|b YANK|n 302986968
938 |a EBSCOhost|b EBSC|n 3317531
994 |a 92|b VIA
999 |c 283962|d 283962