Statistical topics and stochastic models for dependent data with applications : applications in reliability, survival analysis and related fields

Book Cover
Average Rating
Published
London : Hoboken : ISTE, Ltd. ; Wiley, 2020.
Status
Available Online

Description

Loading Description...

More Details

Format
Language
English
ISBN
9781119779421, 1119779421, 9781119779414, 1119779413

Notes

General Note
7.3. Pointwise estimation with absolute error risk.
Description
This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.
Local note
O'Reilly,O'Reilly Online Learning: Academic/Public Library Edition

Also in this Series

Checking series information...

More Like This

Loading more titles like this title...

Reviews from GoodReads

Loading GoodReads Reviews.

Citations

APA Citation, 7th Edition (style guide)

Barbu, V. S., & Vergne, N. (2020). Statistical topics and stochastic models for dependent data with applications: applications in reliability, survival analysis and related fields . ISTE, Ltd. ; Wiley.

Chicago / Turabian - Author Date Citation, 17th Edition (style guide)

Barbu, Vlad Stefan and Nicolas. Vergne. 2020. Statistical Topics and Stochastic Models for Dependent Data With Applications: Applications in Reliability, Survival Analysis and Related Fields. London : Hoboken: ISTE, Ltd. ; Wiley.

Chicago / Turabian - Humanities (Notes and Bibliography) Citation, 17th Edition (style guide)

Barbu, Vlad Stefan and Nicolas. Vergne. Statistical Topics and Stochastic Models for Dependent Data With Applications: Applications in Reliability, Survival Analysis and Related Fields London : Hoboken: ISTE, Ltd. ; Wiley, 2020.

Harvard Citation (style guide)

Barbu, V. S. and Vergne, N. (2020). Statistical topics and stochastic models for dependent data with applications: applications in reliability, survival analysis and related fields. London : Hoboken: ISTE, Ltd. ; Wiley.

MLA Citation, 9th Edition (style guide)

Barbu, Vlad Stefan., and Nicolas Vergne. Statistical Topics and Stochastic Models for Dependent Data With Applications: Applications in Reliability, Survival Analysis and Related Fields ISTE, Ltd. ; Wiley, 2020.

Note! Citations contain only title, author, edition, publisher, and year published. Citations should be used as a guideline and should be double checked for accuracy. Citation formats are based on standards as of August 2021.

Staff View

Grouped Work ID
a2bc4a69-d124-9dc0-6c4b-39c535b43ca2-eng
Go To Grouped Work View in Staff Client

Grouping Information

Grouped Work IDa2bc4a69-d124-9dc0-6c4b-39c535b43ca2-eng
Full titlestatistical topics and stochastic models for dependent data with applications applications in reliability survival analysis and related fields
Authorvlad stefan barbu nicolas vergne
Grouping Categorybook
Last Update2024-12-17 08:40:50AM
Last Indexed2024-12-17 08:42:37AM

Book Cover Information

Image Sourcedefault
First LoadedAug 14, 2023
Last UsedNov 10, 2024

Marc Record

First DetectedMar 21, 2023 11:09:59 AM
Last File Modification TimeDec 17, 2024 08:13:30 AM
SuppressedRecord had no items

MARC Record

LEADER06052cam a2200565 a 4500
001on1202464467
003OCoLC
00520241217081207.0
006m     o  d        
007cr un|---aucuu
008201031s2020    enk     o     000 0 eng d
019 |a 1200197319|a 1202448668
020 |a 9781119779421|q (electronic bk. ;|q oBook)
020 |a 1119779421|q (electronic bk. ;|q oBook)
020 |a 9781119779414
020 |a 1119779413
035 |a (OCoLC)1202464467|z (OCoLC)1200197319|z (OCoLC)1202448668
040 |a EBLCP|b eng|e pn|c EBLCP|d EBLCP|d YDX|d DG1|d OCLCO|d OCLCF|d OCLCQ|d OCLCO|d KSU|d OCLCQ|d OCLCO|d OCLCL
049 |a MAIN
050 4|a QA276
066 |c (S
08204|a 519.5|2 23
24500|a Statistical topics and stochastic models for dependent data with applications :|b applications in reliability, survival analysis and related fields /|c edited by Vlad Stefan Barbu, Nicolas Vergne.
260 |a London :|b ISTE, Ltd. ;|a Hoboken :|b Wiley,|c 2020.
300 |a 1 online resource (281 pages)
336 |a text|b txt|2 rdacontent
337 |a computer|b c|2 rdamedia
338 |a online resource|b cr|2 rdacarrier
4901 |a Mathematics and statistics
500 |a 7.3. Pointwise estimation with absolute error risk.
5050 |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Markov and Semi-Markov Processes -- Chapter 1 Variable Length Markov Chains, Persistent Random Walks: A Close Encounter -- 1.1. Introduction -- 1.2. VLMCs: definition of the model -- 1.3. Definition and behavior of PRWs -- 1.3.1. PRWs in dimension one -- 1.3.2. PRWs in dimension two -- 1.4. VLMC: existence of stationary probability measures -- 1.5. Where VLMC and PRW meet -- 1.5.1. Semi-Markov chains and Markov additive processes -- 1.5.2. PRWs induce semi-Markov chains
5058 |a 3.3.2. Two-stage model -- 3.3.3. H model -- 3.3.4. Three-stage model -- 3.3.5. N-stage model -- 3.3.6. Other extensions -- 3.4. Markov chain stock models -- 3.4.1. Hurley and Johnson model -- 3.4.2. Yao model -- 3.4.3. Markov stock model -- 3.4.4. Multivariate Markov chain stock model -- 3.5. Conclusion -- 3.6. References -- Chapter 4 Estimation of Piecewise-deterministic Trajectories in a Quantum Optics Scenario -- 4.1. Introduction -- 4.1.1. The postulates of quantum mechanics -- 4.1.2. Dynamics of open quantum Markovian systems -- 4.1.3. Stochastic wave function: quantum dynamics as PDPs
5058 |a 4.1.4. Estimation for PDPs -- 4.2. Problem formulation -- 4.2.1. Atom-field interaction -- 4.2.2. Piecewise-deterministic trajectories -- 4.2.3. Measures -- 4.3. Estimation procedure -- 4.3.1. Strategy -- 4.3.2. Least-square estimators -- 4.3.3. Numerical experiments -- 4.4. Physical interpretation -- 4.5. Concluding remarks -- 4.6. References -- Chapter 5 Identification of Patterns in a Semi-Markov Chain -- 5.1. Introduction -- 5.2. The prefix chain -- 5.3. The semi-Markov setting -- 5.4. The hitting time of the pattern -- 5.5. A genomic application -- 5.6. Concluding remarks -- 5.7. References
5058 |a Part 2 Autoregressive Processes -- Chapter 6 Time Changes and Stationarity Issues for Continuous Time Autoregressive Processes of Order -- 6.1. Introduction -- 6.2. Basics -- 6.3. Stationary AR processes -- 6.3.1. Formulas for the two first-order moments -- 6.3.2. Examples -- 6.3.3. Conditions for stationarity of CAR1(p) processes -- 6.4. Time transforms -- 6.4.1. Properties of time transforms -- 6.4.2. MS processes -- 6.5. Conclusion -- 6.6. Appendix -- 6.7. References -- Chapter 7 Sequential Estimation for Non-parametric Autoregressive Models -- 7.1. Introduction -- 7.2. Main conditions
520 |a This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.
5880 |a Print version record.
590 |a O'Reilly|b O'Reilly Online Learning: Academic/Public Library Edition
650 0|a Mathematical statistics.|9 46678
650 0|a Stochastic processes.|9 56796
7001 |a Barbu, Vlad Stefan.
7001 |a Vergne, Nicolas.
758 |i has work:|a Statistical topics and stochastic models for dependent data with applications (Text)|1 https://id.oclc.org/worldcat/entity/E39PCH8km78qmpFhyfyKQJqDWP|4 https://id.oclc.org/worldcat/ontology/hasWork
77608|i Print version:|a Barbu, Vlad Stefan.|t Statistical Topics and Stochastic Models for Dependent Data with Applications : Applications in Reliability, Survival Analysis and Related Fields.|d Newark : John Wiley & Sons, Incorporated, ©2020|z 9781786306036
830 0|a Mathematics and statistics series (ISTE)
85640|u https://library.access.arlingtonva.us/login?url=https://learning.oreilly.com/library/view/~/9781786306036/?ar|x O'Reilly|z eBook
8808 |6 505-00/(S|a 1.5.3. Semi-Markov chain of the α-LIS in a stable VLMC -- 1.5.4. The meeting point -- 1.6. References -- Chapter 2 Bootstraps of Martingale-difference Arrays Under the Uniformly Integrable Entropy -- 2.1. Introduction and motivation -- 2.2. Some preliminaries and notation -- 2.3. Main results -- 2.4. Application for the semi-Markov kernel estimators -- 2.5. Proofs -- 2.6. References -- Chapter 3 A Review of the Dividend Discount Model: From Deterministic to Stochastic Models -- 3.1. Introduction -- 3.2. General model -- 3.3. Gordon growth model and extensions -- 3.3.1. Gordon model
938 |a ProQuest Ebook Central|b EBLB|n EBL6370637
938 |a YBP Library Services|b YANK|n 301624754
994 |a 92|b VIA
999 |c 284994|d 284994