Beyond Spreadsheets with R

Book Cover
Average Rating
Published
Manning Publications, 2019.
Status
Available Online

Description

Loading Description...

More Details

Format
Edition
1st edition.
Language
English
UPC
9781617294594

Notes

Description
With Beyond Spreadsheets with R you'll learn how to go from raw data to meaningful insights using R and RStudio. Each carefully crafted chapter covers a unique way to wrangle data, from understanding individual values to interacting with complex collections of data, including data you scrape from the web. You'll build on simple programming techniques like loops and conditionals to create your own custom functions. You'll come away with a toolkit of strategies for analyzing and visualizing data of all sorts.
Issuing Body
Made available through: Safari, an O'Reilly Media Company.
Local note
O'Reilly,O'Reilly Online Learning: Academic/Public Library Edition

Also in this Series

Checking series information...

More Like This

Loading more titles like this title...

Citations

APA Citation, 7th Edition (style guide)

Carroll, J. (2019). Beyond Spreadsheets with R (1st edition.). Manning Publications.

Chicago / Turabian - Author Date Citation, 17th Edition (style guide)

Carroll, Jon. 2019. Beyond Spreadsheets With R. Manning Publications.

Chicago / Turabian - Humanities (Notes and Bibliography) Citation, 17th Edition (style guide)

Carroll, Jon. Beyond Spreadsheets With R Manning Publications, 2019.

Harvard Citation (style guide)

Carroll, J. (2019). Beyond spreadsheets with R. 1st edn. Manning Publications.

MLA Citation, 9th Edition (style guide)

Carroll, Jon. Beyond Spreadsheets With R 1st edition., Manning Publications, 2019.

Note! Citations contain only title, author, edition, publisher, and year published. Citations should be used as a guideline and should be double checked for accuracy. Citation formats are based on standards as of August 2021.

Staff View

Grouped Work ID
08251965-0bb2-506d-5d52-d6363fef3ee4-eng
Go To Grouped Work View in Staff Client

Grouping Information

Grouped Work ID08251965-0bb2-506d-5d52-d6363fef3ee4-eng
Full titlebeyond spreadsheets with r
Authorcarroll jon
Grouping Categorybook
Last Update2024-12-17 08:30:41AM
Last Indexed2024-12-17 08:33:12AM

Book Cover Information

Image SourcecontentCafe
First LoadedAug 17, 2023
Last UsedNov 4, 2024

Marc Record

First DetectedMar 21, 2023 12:10:45 PM
Last File Modification TimeDec 17, 2024 08:09:08 AM
SuppressedRecord had no items

MARC Record

LEADER07295cam a2200433Ma 4500
001on1099553230
003OCoLC
00520241217080653.0
006m     o  d        
007cr cnu||||||||
008190224s2019    xx      o     000 0 eng  
0248 |a 9781617294594
035 |a (OCoLC)1099553230
040 |a AU@|b eng|e pn|c AU@|d OCLCQ|d TOH|d OCLCO|d CZL|d OCLCO|d OCLCQ|d OCLCO|d OCLCL
049 |a MAIN
08204|a 006.3/12|q OCoLC|2 23/eng/20230216
1001 |a Carroll, Jon,|e author.|9 157145
24510|a Beyond Spreadsheets with R /|c Carroll, Jonathan.
250 |a 1st edition.
264 1|b Manning Publications,|c 2019.
300 |a 1 online resource (352 pages)
336 |a text|b txt|2 rdacontent
337 |a computer|b c|2 rdamedia
338 |a online resource|b cr|2 rdacarrier
347 |a text file
5050 |a Intro -- Titlepage -- Copyright -- preface -- acknowledgments -- about this book -- Who needs this book? -- How to read this book -- Formatting -- Structure -- Getting started -- Where to find more help -- More about this book -- Book forum -- about the author -- about the cover illustration -- Chapter 1: Introducing data and the R language -- 1.1 Data: What, where, how? -- 1.1.1 What is data? -- 1.1.2 Seeing the world as data sources -- 1.1.3 Data munging -- 1.1.4 What you can do with well-handled data -- 1.1.5 Data as an asset -- 1.1.6 Reproducible research and version control -- 1.2 Introducing R -- 1.2.1 The origins of R -- 1.2.2 What R is and what it isn't -- 1.3 How R works -- 1.4 Introducing RStudio -- 1.4.1 Working with R within RStudio -- 1.4.2 Built-in packages (data and functions) -- 1.4.3 Built-in documentation -- 1.4.4 Vignettes -- 1.5 Try it yourself -- Terminology -- Summary -- Chapter 2: Getting to know R data types -- 2.1 Types of data -- 2.1.1 Numbers -- 2.1.2 Text (strings) -- 2.1.3 Categories (factors) -- 2.1.4 Dates and times -- 2.1.5 Logicals -- 2.1.6 Missing values -- 2.2 Storing values (assigning) -- 2.2.1 Naming data (variables) -- 2.2.2 Unchanging data -- 2.2.3 The assignment operators (&lt -- vs. =) -- 2.3 Specifying the data type -- 2.4 Telling R to ignore something -- 2.5 Try it yourself -- Terminology -- Summary -- Chapter 3: Making new data values -- 3.1 Basic mathematics -- 3.2 Operator precedence -- 3.3 String concatenation (joining) -- 3.4 Comparisons -- 3.5 Automatic conversion (coercion) -- 3.6 Try it yourself -- Terminology -- Summary -- Chapter 4: Understanding the tools you'll use: Functions -- 4.1 Functions -- 4.1.1 Under the hood -- 4.1.2 Function template -- 4.1.3 Arguments -- 4.1.4 Multiple arguments -- 4.1.5 Default arguments -- 4.1.6 Argument name matching -- 4.1.7 Partial matching -- 4.1.8 Scope.
5058 |a 4.2 Packages -- 4.2.1 Installing packages -- 4.2.2 How does R (not) know about this function? -- 4.2.3 Namespaces -- 4.3 Messages, warnings, and errors, oh my! -- 4.3.1 Creating messages, warnings, and errors -- 4.3.2 Diagnosing messages, warnings, and errors -- 4.4 Testing -- 4.5 Project: Generalizing a function -- 4.6 Try it yourself -- Terminology -- Summary -- Chapter 5: Combining data values -- 5.1 Simple collections -- 5.1.1 Coercion -- 5.1.2 Missing values -- 5.1.3 Attributes -- 5.1.4 Names -- 5.2 Sequences -- 5.2.1 Vector functions -- 5.2.2 Vector math operations -- 5.3 Matrices -- 5.3.1 Naming dimensions -- 5.4 Lists -- 5.5 data.frames -- 5.6 Classes -- 5.6.1 The tibble class -- 5.6.2 Structures as function arguments -- 5.7 Try it yourself -- Terminology -- Summary -- Chapter 6: Selecting data values -- 6.1 Text processing -- 6.1.1 Text matching -- 6.1.2 Substrings -- 6.1.3 Text substitutions -- 6.1.4 Regular expressions -- 6.2 Selecting components from structures -- 6.2.1 Vectors -- 6.2.2 Lists -- 6.2.3 Matrices -- 6.3 Replacing values -- 6.4 data.frames and dplyr -- 6.4.1 dplyr verbs -- 6.4.2 Non-standard evaluation -- 6.4.3 Pipes -- 6.4.4 Subsetting data.frame the hard way -- 6.5 Replacing NA -- 6.6 Selecting conditionally -- 6.7 Summarizing values -- 6.8 A worked example: Excel vs. R -- 6.9 Try it yourself -- 6.9.1 Solutions -- no peeking -- Terminology -- Summary -- Chapter 7: Doing things with lots of data -- 7.1 Tidy data principles -- 7.1.1 The working directory -- 7.1.2 Stored data formats -- 7.1.3 Reading data into R -- 7.1.4 Scraping data -- 7.1.5 Inspecting data -- 7.1.6 Dealing with odd values in data (sentinel values) -- 7.1.7 Converting to tidy data -- 7.2 Merging data -- 7.3 Writing data from R -- 7.4 Try it yourself -- Terminology -- Summary -- Chapter 8: Doing things conditionally: Control structures -- 8.1 Looping.
5058 |a 8.1.1 Vectorization -- 8.1.2 Tidy repetition: Looping with purrr -- 8.1.3 for loops -- 8.2 Wider and narrower loop scope -- 8.2.1 while loops -- 8.3 Conditional evaluation -- 8.3.1 if conditions -- 8.3.2 ifelse conditions -- 8.4 Try it yourself -- Terminology -- Summary -- Chapter 9: Visualizing data: Plotting -- 9.1 Data preparation -- 9.1.1 Tidy data, revisited -- 9.1.2 Importance of data types -- 9.2 ggplot2 -- 9.2.1 General construction -- 9.2.2 Adding points -- 9.2.3 Style aesthetics -- 9.2.4 Adding lines -- 9.2.5 Adding bars -- 9.2.6 Other types of plots -- 9.2.7 Scales -- 9.2.8 Facetting -- 9.2.9 Additional options -- 9.3 Plots as objects -- 9.4 Saving plots -- 9.5 Try it yourself -- Terminology -- Summary -- Chapter 10: Doing more with your data with extensions -- 10.1 Writing your own packages -- 10.1.1 Creating a minimal package -- 10.1.2 Documentation -- 10.2 Analyzing your package -- 10.2.1 Unit testing -- 10.2.2 Profiling -- 10.3 What to do next? -- 10.3.1 Regression -- 10.3.2 Clustering -- 10.3.3 Working with maps -- 10.3.4 Interacting with APIs -- 10.3.5 Sharing your package -- 10.4 More resources -- Terminology -- Summary -- Appendix A: Installing R -- Windows -- Mac -- Linux -- From source -- Appendix B: Installing RStudio -- Installing RStudio -- Packages used in this book -- Appendix C: Graphics in base R -- Index -- List of Figures -- List of Tables -- List of Listings.
520 |a With Beyond Spreadsheets with R you'll learn how to go from raw data to meaningful insights using R and RStudio. Each carefully crafted chapter covers a unique way to wrangle data, from understanding individual values to interacting with complex collections of data, including data you scrape from the web. You'll build on simple programming techniques like loops and conditionals to create your own custom functions. You'll come away with a toolkit of strategies for analyzing and visualizing data of all sorts.
542 |f © 2019 Manning Publications Co. All rights reserved.|g 2019
550 |a Made available through: Safari, an O'Reilly Media Company.
590 |a O'Reilly|b O'Reilly Online Learning: Academic/Public Library Edition
650 0|a R (Computer program language)|9 74517
650 0|a Data mining.|9 71797
7102 |a Safari, an O'Reilly Media Company.
758 |i has work:|a Beyond spreadsheets with R (Text)|1 https://id.oclc.org/worldcat/entity/E39PCGyVv7p933Y6PDxwYbvBrq|4 https://id.oclc.org/worldcat/ontology/hasWork
85640|u https://library.access.arlingtonva.us/login?url=https://learning.oreilly.com/library/view/~/9781617294594/?ar|x O'Reilly|z eBook
994 |a 92|b VIA
999 |c 288339|d 288339