Machine learning with R quick start guide : a beginner's guide to implementing machine learning techniques from scratch using R 3.5

Book Cover
Average Rating
Published
Birmingham, UK : Packt Publishing, 2019.
Status
Available Online

Description

Loading Description...

More Details

Format
Language
English
ISBN
1838647058, 9781838647056

Notes

Description
This book is ideal for people wanting to get up-and-running with the core concepts of machine learning using R 3.5. This book follows a step-by-step approach to implementing an end-to-end pipeline, addressing data collection and processing, various types of data analysis, and machine learning use cases.
Local note
O'Reilly O'Reilly Online Learning: Academic/Public Library Edition

Discover More

Also in this Series

Checking series information...

More Like This

Loading more titles like this title...

Reviews from GoodReads

Loading GoodReads Reviews.

Citations

APA Citation, 7th Edition (style guide)

Pastor Sanz, I. (2019). Machine learning with R quick start guide: a beginner's guide to implementing machine learning techniques from scratch using R 3.5 . Packt Publishing.

Chicago / Turabian - Author Date Citation, 17th Edition (style guide)

Pastor Sanz, Iván. 2019. Machine Learning With R Quick Start Guide: A Beginner's Guide to Implementing Machine Learning Techniques From Scratch Using R 3.5. Birmingham, UK: Packt Publishing.

Chicago / Turabian - Humanities (Notes and Bibliography) Citation, 17th Edition (style guide)

Pastor Sanz, Iván. Machine Learning With R Quick Start Guide: A Beginner's Guide to Implementing Machine Learning Techniques From Scratch Using R 3.5 Birmingham, UK: Packt Publishing, 2019.

Harvard Citation (style guide)

Pastor Sanz, I. (2019). Machine learning with R quick start guide: a beginner's guide to implementing machine learning techniques from scratch using R 3.5. Birmingham, UK: Packt Publishing.

MLA Citation, 9th Edition (style guide)

Pastor Sanz, Iván. Machine Learning With R Quick Start Guide: A Beginner's Guide to Implementing Machine Learning Techniques From Scratch Using R 3.5 Packt Publishing, 2019.

Note! Citations contain only title, author, edition, publisher, and year published. Citations should be used as a guideline and should be double checked for accuracy. Citation formats are based on standards as of August 2021.

Staff View

Grouped Work ID
2eb3b01d-cedd-364f-234b-88b487ff8487-eng
Go To Grouped Work View in Staff Client

Grouping Information

Grouped Work ID2eb3b01d-cedd-364f-234b-88b487ff8487-eng
Full titlemachine learning with r quick start guide a beginners guide to implementing machine learning techniques from scratch using r 3 5
Authorpastor sanz iván
Grouping Categorybook
Last Update2025-01-24 12:33:29PM
Last Indexed2025-05-22 03:09:18AM

Book Cover Information

Image Sourcesyndetics
First LoadedNov 3, 2024
Last UsedFeb 12, 2025

Marc Record

First DetectedMar 21, 2023 12:10:48 PM
Last File Modification TimeDec 17, 2024 08:09:10 AM
SuppressedRecord had no items

MARC Record

LEADER05627cam a2200553 i 4500
001on1100643399
003OCoLC
00520241217080700.0
006m     o  d        
007cr unu||||||||
008190509s2019    enka    o     000 0 eng d
015 |a GBB995017|2 bnb
0167 |a 019365493|2 Uk
019 |a 1091700087|a 1096538373
020 |a 1838647058
020 |a 9781838647056|q (electronic bk.)
035 |a (OCoLC)1100643399|z (OCoLC)1091700087|z (OCoLC)1096538373
037 |a CL0501000047|b Safari Books Online
040 |a UMI|b eng|e rda|e pn|c UMI|d TEFOD|d EBLCP|d MERUC|d UKMGB|d OCLCF|d YDX|d UKAHL|d OCLCQ|d N$T|d OCLCO|d OCLCQ|d K6U|d OCLCQ|d OCLCO|d OCLCL|d SXB
049 |a MAIN
050 4|a Q325.5
08204|a 006.31|2 23
1001 |a Pastor Sanz, Iván,|e author.
24510|a Machine learning with R quick start guide :|b a beginner's guide to implementing machine learning techniques from scratch using R 3.5 /|c Iván Pastor Sanz.
264 1|a Birmingham, UK :|b Packt Publishing,|c 2019.
300 |a 1 online resource :|b illustrations
336 |a text|b txt|2 rdacontent
337 |a computer|b c|2 rdamedia
338 |a online resource|b cr|2 rdacarrier
5050 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: R Fundamentals for Machine Learning; R and RStudio installation; Things to know about R; Using RStudio; RStudio installation ; Some basic commands; Objects, special cases, and basic operators in R; Working with objects; Working with vectors; Vector indexing; Functions on vectors; Factor; Factor levels; Strings; String functions; Matrices; Representing matrices; Creating matrices; Accessing elements in a matrix; Matrix functions; Lists; Creating lists
5058 |a Accessing components and elements in a listData frames; Accessing elements in data frames; Functions of data frames; Importing or exporting data; Working with functions; Controlling code flow; All about R packages; Installing packages; Necessary packages; Taking further steps; Background on the financial crisis; Summary; Chapter 2: Predicting Failures of Banks -- Data Collection; Collecting financial data; Why FDIC?; Listing files; Finding files; Combining results; Removing tables; Knowing your observations; Handling duplications; Operating our problem; Collecting the target variable
5058 |a Structuring dataSummary; Chapter 3: Predicting Failures of Banks -- Descriptive Analysis; Data overview; Getting acquainted with our variables; Finding missing values for a variable; Converting the format of the variables; Sampling; Partitioning samples; Checking samples; Implementing descriptive analysis; Dealing with outliers; The winsorization process; Implementing winsorization; Distinguishing single valued variables; Treating missing information; Analyzing the missing value; Understanding the results; Summary; Chapter 4: Predicting Failures of Banks -- Univariate Analysis
5058 |a Feature selection algorithmFeature selection classes; Filter methods; Wrapper methods; Boruta package; Embedded methods; Ridge regression; A limitation of Ridge regression; Lasso ; Limitations of Lasso; Elastic net; Drawbacks of elastic net; Dimensionality reduction; Dimensionality reduction technique; Summary; Chapter 5: Predicting Failures of Banks -- Multivariate Analysis; Logistic regression; Regularized methods; Testing a random forest model; Gradient boosting; Deep learning in neural networks; Designing a neural network; Training a neural network; Support vector machines
5058 |a Selecting SVM parametersThe SVM kernel parameter; The cost parameter; Gamma parameter; Training an SVM model; Ensembles; Average model; Majority vote; Model of models; Automatic machine learning; Standardizing variables; Summary ; Chapter 6: Visualizing Economic Problems in the European Union; A general overview of economic problems in countries; Understanding credit ratings; The role of credit rating agencies; The credit rating process; Clustering countries based on macroeconomic imbalances; Data collection; Downloading and viewing the data; Streamlining data; Studying the data
520 |a This book is ideal for people wanting to get up-and-running with the core concepts of machine learning using R 3.5. This book follows a step-by-step approach to implementing an end-to-end pipeline, addressing data collection and processing, various types of data analysis, and machine learning use cases.
5880 |a Online resource; title from title page (Safari, viewed May 9, 2019).
590 |a O'Reilly|b O'Reilly Online Learning: Academic/Public Library Edition
650 0|a Machine learning.|9 46043
650 0|a R (Computer program language)|9 74517
655 4|a Electronic book.
758 |i has work:|a Machine learning with R quick start guide (Text)|1 https://id.oclc.org/worldcat/entity/E39PD3HwPYVjrpDJ7HP8xp3cw3|4 https://id.oclc.org/worldcat/ontology/hasWork
77608|i Print version:|a Sanz, Iván Pastor.|t Machine Learning with R Quick Start Guide : A Beginner's Guide to Implementing Machine Learning Techniques from Scratch Using R 3. 5.|d Birmingham : Packt Publishing Ltd, ©2019|z 9781838644338
85640|u https://library.access.arlingtonva.us/login?url=https://learning.oreilly.com/library/view/~/9781838644338/?ar|x O'Reilly|z eBook
938 |a Askews and Holts Library Services|b ASKH|n BDZ0039952970
938 |a ProQuest Ebook Central|b EBLB|n EBL5744469
938 |a EBSCOhost|b EBSC|n 2094784
938 |a YBP Library Services|b YANK|n 16142490
994 |a 92|b VIA
999 |c 288401|d 288401