Thinking in Pandas : how to use the Python data analysis library the right way

Book Cover
Average Rating
Published
[United States] : Apress, 2020.
Status
Available Online

Description

Loading Description...

More Details

Format
Language
English
ISBN
9781484258392, 1484258398
UPC
10.1007/978-1-4842-5839-2., 10.1007/978-1-4842-5

Notes

General Note
Includes index.
Description
Understand and implement big data analysis solutions in pandas with an emphasis on performance. This book strengthens your intuition for working with pandas, the Python data analysis library, by exploring its underlying implementation and data structures. Thinking in Pandas introduces the topic of big data and demonstrates concepts by looking at exciting and impactful projects that pandas helped to solve. From there, you will learn to assess your own projects by size and type to see if pandas is the appropriate library for your needs. Author Hannah Stepanek explains how to load and normalize data in pandas efficiently, and reviews some of the most commonly used loaders and several of their most powerful options. You will then learn how to access and transform data efficiently, what methods to avoid, and when to employ more advanced performance techniques. You will also go over basic data access and munging in pandas and the intuitive dictionary syntax. Choosing the right DataFrame format, working with multi-level DataFrames, and how pandas might be improved upon in the future are also covered. By the end of the book, you will have a solid understanding of how the pandas library works under the hood. Get ready to make confident decisions in your own projects by utilizing pandas--the right way. You will: Understand the underlying data structure of pandas and why it performs the way it does under certain circumstances Discover how to use pandas to extract, transform, and load data correctly with an emphasis on performance Choose the right DataFrame so that the data analysis is simple and efficient. Improve performance of pandas operations with other Python libraries.
Local note
O'Reilly O'Reilly Online Learning: Academic/Public Library Edition

Discover More

Also in this Series

Checking series information...

More Like This

Loading more titles like this title...

Reviews from GoodReads

Loading GoodReads Reviews.

Citations

APA Citation, 7th Edition (style guide)

Stepanek, H. (2020). Thinking in Pandas: how to use the Python data analysis library the right way . Apress.

Chicago / Turabian - Author Date Citation, 17th Edition (style guide)

Stepanek, Hannah. 2020. Thinking in Pandas: How to Use the Python Data Analysis Library the Right Way. [United States]: Apress.

Chicago / Turabian - Humanities (Notes and Bibliography) Citation, 17th Edition (style guide)

Stepanek, Hannah. Thinking in Pandas: How to Use the Python Data Analysis Library the Right Way [United States]: Apress, 2020.

Harvard Citation (style guide)

Stepanek, H. (2020). Thinking in pandas: how to use the python data analysis library the right way. [United States]: Apress.

MLA Citation, 9th Edition (style guide)

Stepanek, Hannah. Thinking in Pandas: How to Use the Python Data Analysis Library the Right Way Apress, 2020.

Note! Citations contain only title, author, edition, publisher, and year published. Citations should be used as a guideline and should be double checked for accuracy. Citation formats are based on standards as of August 2021.

Staff View

Grouped Work ID
f9f81a8e-ff6d-ed7e-d6f8-2fe2ff7f8477-eng
Go To Grouped Work View in Staff Client

Grouping Information

Grouped Work IDf9f81a8e-ff6d-ed7e-d6f8-2fe2ff7f8477-eng
Full titlethinking in pandas how to use the python data analysis library the right way
Authorstepanek hannah
Grouping Categorybook
Last Update2025-03-05 08:25:16AM
Last Indexed2025-03-05 08:30:25AM

Book Cover Information

Image SourcecontentCafe
First LoadedAug 2, 2023
Last UsedOct 19, 2024

Marc Record

First DetectedMar 22, 2023 08:36:11 AM
Last File Modification TimeDec 17, 2024 08:12:05 AM
SuppressedRecord had no items

MARC Record

LEADER05774cam a2200601 i 4500
001on1157934801
003OCoLC
00520241217081054.0
006m     o  d        
007cr |n|||||||||
008200613s2020    xxua    o     001 0 eng d
015 |a GBC0G9124|2 bnb
0167 |a 019827740|2 Uk
019 |a 1158217984|a 1162007254|a 1163823919|a 1164674377|a 1175703286|a 1182528436|a 1183406285|a 1184033977|a 1199337261|a 1203558117
020 |a 9781484258392|q (electronic bk.)
020 |a 1484258398|q (electronic bk.)
0247 |a 10.1007/978-1-4842-5839-2.|2 doi
0248 |a 10.1007/978-1-4842-5
035 |a (OCoLC)1157934801|z (OCoLC)1158217984|z (OCoLC)1162007254|z (OCoLC)1163823919|z (OCoLC)1164674377|z (OCoLC)1175703286|z (OCoLC)1182528436|z (OCoLC)1183406285|z (OCoLC)1184033977|z (OCoLC)1199337261|z (OCoLC)1203558117
037 |a CL0501000152|b Safari Books Online
040 |a YDX|b eng|e pn|c YDX|d EBLCP|d GW5XE|d LQU|d OCLCF|d N$T|d UMI|d NLW|d LIP|d UKMGB|d UKAHL|d SNK|d OCLCO|d OCLCQ|d COM|d OCLCO|d GUA|d OCLCQ|d OCLCO|d OCLCL
049 |a MAIN
050 4|a QA76.76.A65
072 7|a UMX.|2 bicssc
072 7|a COM051360.|2 bisacsh
072 7|a UMX.|2 thema
08204|a 005.1|2 23
1001 |a Stepanek, Hannah.
24510|a Thinking in Pandas :|b how to use the Python data analysis library the right way /|c Hannah Stepanek.
260 |a [United States] :|b Apress,|c 2020.
300 |a 1 online resource (xi, 186 pages ) :|b illustrations
336 |a text|b txt|2 rdacontent
337 |a computer|b c|2 rdamedia
338 |a online resource|b cr|2 rdacarrier
347 |a text file
347 |b PDF
500 |a Includes index.
5050 |a Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Introduction -- Chapter 1: Introduction -- About pandas -- How pandas helped build an image of a black hole -- How pandas helps financial institutions make more informed predictions about the future market -- How pandas helps improve discoverability of content -- Chapter 2: Basic Data Access and Merging -- DataFrame creation and access -- The iloc method -- The loc method -- Combining DataFrames using the merge method -- Combining DataFrames using the join method -- Combining DataFrames using the concat method
5058 |a Chapter 3: How pandas Works Under the Hood -- Python data structures -- The performance of the CPython interpreter, Python, and NumPy -- An introduction to pandas performance -- Choosing the right DataFrame -- Chapter 4: Loading and Normalizing Data -- pd.read_csv -- pd.read_json -- pd.read_sql, pd.read_sql_table, and pd.read_sql_query -- Chapter 5: Basic Data Transformation in pandas -- Pivot and pivot table -- Stack and unstack -- Melt -- Transpose -- Chapter 6: The apply Method -- When not to use apply -- When to use apply -- Improving performance of apply using Cython -- Chapter 7: Groupby
5058 |a Using groupby correctly -- Indexing -- Avoiding groupby -- Chapter 8: Performance Improvements Beyond pandas -- Computer architecture -- How NumExpr improves performance -- BLAS and LAPACK -- Chapter 9: The Future of pandas -- pandas 1.0 -- Conclusion -- Appendix: Useful Reference Tables -- Index
520 |a Understand and implement big data analysis solutions in pandas with an emphasis on performance. This book strengthens your intuition for working with pandas, the Python data analysis library, by exploring its underlying implementation and data structures. Thinking in Pandas introduces the topic of big data and demonstrates concepts by looking at exciting and impactful projects that pandas helped to solve. From there, you will learn to assess your own projects by size and type to see if pandas is the appropriate library for your needs. Author Hannah Stepanek explains how to load and normalize data in pandas efficiently, and reviews some of the most commonly used loaders and several of their most powerful options. You will then learn how to access and transform data efficiently, what methods to avoid, and when to employ more advanced performance techniques. You will also go over basic data access and munging in pandas and the intuitive dictionary syntax. Choosing the right DataFrame format, working with multi-level DataFrames, and how pandas might be improved upon in the future are also covered. By the end of the book, you will have a solid understanding of how the pandas library works under the hood. Get ready to make confident decisions in your own projects by utilizing pandas--the right way. You will: Understand the underlying data structure of pandas and why it performs the way it does under certain circumstances Discover how to use pandas to extract, transform, and load data correctly with an emphasis on performance Choose the right DataFrame so that the data analysis is simple and efficient. Improve performance of pandas operations with other Python libraries.
590 |a O'Reilly|b O'Reilly Online Learning: Academic/Public Library Edition
650 0|a Application program interfaces (Computer software)|9 72854
650 0|a Python (Computer program language)|9 71333
758 |i has work:|a Thinking in Pandas (Text)|1 https://id.oclc.org/worldcat/entity/E39PCY3TX3c74bvDy4BGvfcQMP|4 https://id.oclc.org/worldcat/ontology/hasWork
77608|i Print version:|z 148425838X|z 9781484258385|w (OCoLC)1141159572
85640|u https://library.access.arlingtonva.us/login?url=https://learning.oreilly.com/library/view/~/9781484258392/?ar|x O'Reilly|z eBook
938 |a Askews and Holts Library Services|b ASKH|n AH37842941
938 |a ProQuest Ebook Central|b EBLB|n EBL6222040
938 |a EBSCOhost|b EBSC|n 2494272
938 |a YBP Library Services|b YANK|n 16803981
994 |a 92|b VIA
999 |c 291071|d 291071