Essential guide to LLMOps : implementing effective LLMOps strategies and tools from data to deployment
Description
More Details
Notes
Also in this Series
Reviews from GoodReads
Citations
Doan, R. (2024). Essential guide to LLMOps: implementing effective LLMOps strategies and tools from data to deployment (1st edition.). Packt Publishing Ltd..
Chicago / Turabian - Author Date Citation, 17th Edition (style guide)Doan, Ryan. 2024. Essential Guide to LLMOps: Implementing Effective LLMOps Strategies and Tools From Data to Deployment. Birmingham, UK: Packt Publishing Ltd.
Chicago / Turabian - Humanities (Notes and Bibliography) Citation, 17th Edition (style guide)Doan, Ryan. Essential Guide to LLMOps: Implementing Effective LLMOps Strategies and Tools From Data to Deployment Birmingham, UK: Packt Publishing Ltd, 2024.
Harvard Citation (style guide)Doan, R. (2024). Essential guide to llmops: implementing effective llmops strategies and tools from data to deployment. 1st edn. Birmingham, UK: Packt Publishing Ltd.
MLA Citation, 9th Edition (style guide)Doan, Ryan. Essential Guide to LLMOps: Implementing Effective LLMOps Strategies and Tools From Data to Deployment 1st edition., Packt Publishing Ltd., 2024.
Staff View
Grouping Information
Grouped Work ID | f882f99e-6443-88ff-4299-aecea3543d04-eng |
---|---|
Full title | essential guide to llmops implementing effective llmops strategies and tools from data to deployment |
Author | doan ryan |
Grouping Category | book |
Last Update | 2025-02-11 03:40:45AM |
Last Indexed | 2025-05-22 03:46:29AM |
Book Cover Information
Image Source | syndetics |
---|---|
First Loaded | May 25, 2025 |
Last Used | May 25, 2025 |
Marc Record
First Detected | Dec 16, 2024 11:30:26 PM |
---|---|
Last File Modification Time | Feb 11, 2025 03:43:06 AM |
Suppressed | Record had no items |
MARC Record
LEADER | 05992cam a22005057i 4500 | ||
---|---|---|---|
001 | on1451039993 | ||
003 | OCoLC | ||
005 | 20250211033926.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 240805s2024 enka o 001 0 eng d | ||
019 | |a 1449501837|a 1449624543 | ||
020 | |a 1835887503 | ||
020 | |a 9781835887509 | ||
020 | |a 1835887511|q (electronic bk.) | ||
020 | |a 9781835887516|q (electronic bk.) | ||
035 | |a (OCoLC)1451039993|z (OCoLC)1449501837|z (OCoLC)1449624543 | ||
037 | |a 9781835887509|b O'Reilly Media | ||
040 | |a ORMDA|b eng|e rda|e pn|c ORMDA|d OCLCO|d OCLKB|d EBLCP|d YDX|d UKAHL | ||
049 | |a MAIN | ||
050 | 4 | |a QA76.9.N38 | |
082 | 0 | 4 | |a 006.3/5|2 23/eng/20240805 |
100 | 1 | |a Doan, Ryan,|e author.|9 290687 | |
245 | 1 | 0 | |a Essential guide to LLMOps :|b implementing effective LLMOps strategies and tools from data to deployment /|c Ryan Doan. |
250 | |a 1st edition. | ||
264 | 1 | |a Birmingham, UK :|b Packt Publishing Ltd.,|c 2024. | |
300 | |a 1 online resource (190 pages) :|b illustrations | ||
336 | |a text|b txt|2 rdacontent | ||
337 | |a computer|b c|2 rdamedia | ||
338 | |a online resource|b cr|2 rdacarrier | ||
500 | |a Includes index. | ||
505 | 0 | |a Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Part 1: Foundations of LLMOps -- Chapter 1: Introduction to LLMs and LLMOps -- The evolution of NLP and LLMs -- The rise of machine learning in NLP -- Deep learning revolution -- The birth of LLMs -- Current state and future directions -- Traditional MLOps versus LLMOps -- Stages in the MLOps life cycle -- Specific challenges and methodologies in LLMOps -- Trends in LLM integration -- Integration of LLMs across industries -- Current trends and examples of LLM applications -- Core concepts of LLMOps | |
505 | 8 | |a Key LLMOps-specific terminology -- Model architecture -- LLMOps workflow overview -- Step-by-step overview -- Real-world example -- Summary -- Chapter 2: Reviewing LLMOps Components -- Data collection and preparation -- Data collection -- Processing raw text -- Tokenization -- Storing token ID mappings -- Dataset storage and database management systems (DBMSs) -- Model pre-training and fine-tuning -- Pre-training -- Fine-tuning -- Sliding windows -- Implementation of the sliding window technique -- Sliding window nuances -- Governance and review -- Avoiding training data leakage -- Access control | |
505 | 8 | |a Review -- Regulatory compliance -- Inference, serving, and scalability -- Online and batch inference -- CPU versus GPU serving -- Containerized deployments -- Monitoring -- Continuous improvement -- Summary -- Part 2: Tools and Strategies in LLMOps -- Chapter 3: Processing Data in LLMOps Tools -- Collecting data -- Collecting structured data -- Collecting semi-structured data -- Collecting unstructured data -- Transforming data -- Defining core data attributes -- Transforming data -- Preparing data -- Cleaning text data -- Handling insufficient context -- Transforming data for LLM consumption | |
505 | 8 | |a Example Workflow in PySpark -- Automating Spark Jobs -- Summary -- Chapter 4: Developing Models via LLMOps -- Creating features -- Tokenizing annotations -- Uniquely identifying tokens with attention masks -- Storing features -- Retrieving features -- Selecting the foundation model -- Choosing the LLM for your specific use case -- Testing foundation LLMs -- Addressing additional model concerns -- Fine-tuning the foundation LLM -- Tuning hyperparameters -- Automating model development -- Summary -- Chapter 5: LLMOps Review and Compliance -- Evaluating LLM performance metrics offline | |
505 | 8 | |a Evaluating binary, multi-class, and multi-label metrics -- Evaluating perplexity, BLUE, and ROUGE -- Evaluating reliability and robustness -- Evaluating conversational flow -- Securing and governing models with LLMOps -- Managing OWASP risks in LLMs -- Governance for LLMs -- Ensuring legal and regulatory compliance -- Operationalizing compliance and performance -- Operationalizing performance -- Security and governance -- Legal and regulatory compliance -- Validation of data and model licensing -- Human review points -- Summary -- Part 3: Advanced LLMOps Applications and Future Outlook | |
520 | |a The rapid advancements in large language models (LLMs) bring significant challenges in deployment, maintenance, and scalability. This Essential Guide to LLMOps provides practical solutions and strategies to overcome these challenges, ensuring seamless integration and the optimization of LLMs in real-world applications. This book takes you through the historical background, core concepts, and essential tools for data analysis, model development, deployment, maintenance, and governance. You'll learn how to streamline workflows, enhance efficiency in LLMOps processes, employ LLMOps tools for precise model fine-tuning, and address the critical aspects of model review and governance. You'll also get to grips with the practices and performance considerations that are necessary for the responsible development and deployment of LLMs. The book equips you with insights into model inference, scalability, and continuous improvement, and shows you how to implement these in real-world applications. By the end of this book, you'll have learned the nuances of LLMOps, including effective deployment strategies, scalability solutions, and continuous improvement techniques, equipping you to stay ahead in the dynamic world of AI. | ||
590 | |a O'Reilly|b O'Reilly Online Learning: Academic/Public Library Edition | ||
650 | 0 | |a Natural language processing (Computer science)|9 63777 | |
650 | 0 | |a Artificial intelligence|9 29344 | |
856 | 4 | 0 | |u https://library.access.arlingtonva.us/login?url=https://learning.oreilly.com/library/view/~/9781835887509/?ar|x O'Reilly|z eBook |
938 | |b OCKB|z netlibrary.ebooks,f9a32c01-5ee7-4919-983c-90076f47eca9-emi | ||
938 | |a YBP Library Services|b YANK|n 21148895 | ||
994 | |a 92|b VIA | ||
999 | |c 361199|d 361199 |