Everything is predictable: how Bayesian statistics explain our world

Book Cover
Average Rating
Publisher
One Signal Publishers/Atria Books
Publication Date
2024.
Language
English

Description

A “fascinating, witty, and perspective-shifting” (Oliver Burkeman, New York Times bestselling author) tour of Bayes’s theorem and its global impact on modern life from the acclaimed science writer and author of The Rationalist’s Guide to the Galaxy.At its simplest, Bayes’s theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event. But in Everything Is Predictable, Tom Chivers lays out how it affects every aspect of our lives. He explains why highly accurate screening tests can lead to false positives and how a failure to account for it in court has put innocent people in jail. A cornerstone of rational thought, many argue that Bayes’s theorem is a description of almost everything. But who was the man who lent his name to this theorem? How did an 18th-century Presbyterian minister and amateur mathematician uncover a theorem that would affect fields as diverse as medicine, law, and artificial intelligence? “Witty, lively, and best of all, extremely nerdy” (Tim Harford, author of The Undercover Economist), Everything Is Predictable is an entertaining and accessible illustration of how a single compelling idea can have far reaching consequences.

More Details

ISBN
9781668052600

Table of Contents

From the Book - First One Signal Publishers/Atria Books hardcover edition.

Introduction: a theory of not quite everything
From The Book of Common Prayer to the full Monte Carlo
Bayes in science
Bayesian decision theory
Bayes in the world
The Bayesian brain
Bayesian life
Acknowledgments
Notes
Index.

Discover More

Author Notes

Loading Author Notes...

Similar Titles From NoveList

NoveList provides detailed suggestions for titles you might like if you enjoyed this book. Suggestions are based on recommendations from librarians and other contributors.
These books have the appeal factors thought-provoking, and they have the genre "science writing -- mathematics"; and the subject "mathematical analysis."
These books have the genre "science writing -- mathematics."
These books have the genre "science writing -- mathematics"; and the subjects "probabilities" and "statistics."
These books have the genres "science writing -- mathematics" and "history writing -- science, technology, and medicine"; and the subjects "probabilities," "statistics," and "applied mathematics."
These books have the appeal factors thought-provoking, and they have the genres "science writing -- mathematics" and "adult books for young adults"; and the subjects "probabilities" and "statistics."
These books have the genre "science writing -- mathematics"; and the subjects "probabilities" and "statistics."
These books have the appeal factors thought-provoking, and they have the genre "science writing -- mathematics"; and the subjects "probabilities," "statistics," and "mathematical statistics."
These books have the genres "science writing -- mathematics" and "adult books for young adults"; and the subjects "probabilities" and "statistics."
These books have the genre "science writing -- mathematics"; and the subject "applied mathematics."
These books have the appeal factors thought-provoking, and they have the genre "science writing -- mathematics"; and the subject "applied mathematics."
These books have the appeal factors thought-provoking, and they have the genre "science writing -- mathematics"; and the subjects "probabilities" and "statistics."
These books have the genre "science writing -- mathematics"; and the subjects "probabilities," "statistics," and "mathematical analysis."

Similar Authors From NoveList

NoveList provides detailed suggestions for other authors you might want to read if you enjoyed this book. Suggestions are based on recommendations from librarians and other contributors.
These authors' works have the genre "science writing"; and the subjects "probabilities" and "statistics."
These authors' works have the genre "science writing"; and the subjects "probabilities" and "statistics."
These authors' works have the genre "science writing"; and the subjects "probabilities" and "statistics."
These authors' works have the genre "science writing."
These authors' works have the genre "science writing"; and the subjects "probabilities" and "statistics."
These authors' works have the genre "science writing"; and the subject "equations."
These authors' works have the genre "science writing."
These authors' works have the appeal factors thought-provoking, and they have the genre "science writing"; and the subjects "probabilities," "statistics," and "mathematical statistics."
These authors' works have the genre "science writing."
These authors' works have the genre "science writing"; and the subjects "probabilities," "statistics," and "applied mathematics."
These authors' works have the genre "science writing."
These authors' works have the genre "science writing."

Published Reviews

Publisher's Weekly Review

This beguiling mathematical romp from science writer Chivers (The Rationalist's Guide to the Galaxy) surveys the far-reaching applications of the statistics theorem elaborated by the 18th-century English minister Thomas Bayes, who showed how to estimate the probability that a hypothesis is true by considering new data alongside "prior" assessments of the hypothesis's accuracy. (For instance, the theorem might determine the probability that a middle-aged woman has Covid by considering a positive test result alongside the virus's prevalence rate among middle-aged women generally.) Bayes's theorem produces startling insights that can upend conventional wisdom, Chivers writes, noting that the equation explains why "a cancer test can be 99 percent accurate even though 99 percent of the people it says have cancer don't." Examining the theorem in a raft of offbeat contexts, the author suggests its focus on evaluating new information in the context of previous beliefs sheds light on why vaccine skeptics are unmoved by evidence demonstrating vaccines' safety and efficacy, and why contestants guessing which door hides a prize on Let's Make a Deal should always switch their pick after the host reveals one of the losing doors. Chivers's dive into probability theory is heady but lucid, and conveys arcane concepts in commonsensical prose. The result is a stimulating take on making sense of a murky, uncertain reality. Photos. Agent: Melissa Flashman, Janklow & Nesbit Assoc. (May)

(c) Copyright PWxyz, LLC. All rights reserved
Powered by Syndetics

Kirkus Book Review

An instructive look at "how likely something is, given the evidence we have." In this compelling account, science writer Chivers, author of The Rationalist's Guide to the Galaxy and How To Read Numbers, introduces us to Thomas Bayes, who developed "perhaps the most important single equation in history." The author explains that life is not a chess game. It's like poker, where we make decisions based on limited information. "The usual way to explain Bayes' theorem is with medical testing," writes the author. For example, does a woman with a positive mammogram have breast cancer? No test is perfect, but it must be nearly 100%, right? Wrong. Readers may be surprised to learn that a test that is 90% accurate (typical of a mammogram) isn't the same as there being a 90% chance that it's correct. Bayes predictions require additional information--in this case, the incidence of breast cancer in the population. Chivers may not be exaggerating his subject's importance, but this is one of the longest of many popular books on Bayes' theorem. Delving almost too deeply, he delivers a history of scientific prediction as well as the ongoing controversy within the statistics community between pro- and anti-Bayesian factions. He also offers a marginally relevant but jaw-dropping account of the current state of science, where ignorance or deliberate manipulation of statistics by ambitious researchers has produced an epidemic of studies announcing results that often can't be reproduced. "Science," he writes, "is explicitly about making predictions--hypotheses--and testing them….The problem is that in science, we like to think that there is an objective truth out there, and the Bayesian model of perception is explicitly subjective. A probability estimate isn't some fact about the world, but my best guess of the world, given the information I have." An ingenious introduction to the mathematics of rational thinking. Copyright (c) Kirkus Reviews, used with permission.

Copyright (c) Kirkus Reviews, used with permission.
Powered by Syndetics

Publishers Weekly Reviews

This beguiling mathematical romp from science writer Chivers (The Rationalist's Guide to the Galaxy) surveys the far-reaching applications of the statistics theorem elaborated by the 18th-century English minister Thomas Bayes, who showed how to estimate the probability that a hypothesis is true by considering new data alongside "prior" assessments of the hypothesis's accuracy. (For instance, the theorem might determine the probability that a middle-aged woman has Covid by considering a positive test result alongside the virus's prevalence rate among middle-aged women generally.) Bayes's theorem produces startling insights that can upend conventional wisdom, Chivers writes, noting that the equation explains why "a cancer test can be 99 percent accurate even though 99 percent of the people it says have cancer don't." Examining the theorem in a raft of offbeat contexts, the author suggests its focus on evaluating new information in the context of previous beliefs sheds light on why vaccine skeptics are unmoved by evidence demonstrating vaccines' safety and efficacy, and why contestants guessing which door hides a prize on Let's Make a Deal should always switch their pick after the host reveals one of the losing doors. Chivers's dive into probability theory is heady but lucid, and conveys arcane concepts in commonsensical prose. The result is a stimulating take on making sense of a murky, uncertain reality. Photos. Agent: Melissa Flashman, Janklow & Nesbit Assoc. (May)

Copyright 2024 Publishers Weekly.

Copyright 2024 Publishers Weekly.
Powered by Content Cafe

Reviews from GoodReads

Loading GoodReads Reviews.

Staff View

Loading Staff View.